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ABSTRACT

Without imposing any theoretical models and assumptions, we present a multivariable regression analysis to
several observable quantities for a sample of 15 gamma-ray bursts (GRBs). The observables used in the analysis
include the isotropic gamma-ray energy (E�, iso), the peak energy of the �F� spectrum in the rest frame (E 0

p), and
the rest-frame break time of the optical afterglow light curves (t 0b). A strong dependence of E�,iso on E 0

p and t 0b is
derived, which reads E�; iso /10

52 ergs ¼ (0:85 � 0:21)(E 0
p/100 keV)1:94�0:17(t 0b/1 day)�1:24�0:23 in a flat universe

with�M ¼ 0:28 andH0 ¼ 71:3 km s�1Mpc�1.We also extend the analysis to the isotropic afterglow energies in the
X-ray and optical bands, respectively, and find that they are essentially not correlated with E 0

p and t
0
b. Regarding the

E�; isoðE 0
p; t 0bÞ relationship as a luminosity indicator, we explore the possible constraints on the cosmological

parameters using the GRB sample. Since there is no low-redshift GRB sample to calibrate this relationship, we
weight the probability of using the relationship in each cosmology to serve as a standard candle by �2 statistics and
then use this cosmology-weighted standard candle to evaluate cosmological parameters. Our results indicate that
0:05 < �M < 0:50 at the 1 � level, with the most probable value of�M being 0.28. The best value of�� is 0.64, but
it is less constrained. Only a loose limit of�� < 1:2 is obtained at the 1 � level. In the case of a flat universe, the 1 �
constraints are 0:13 < �M < 0:49 and 0:50 < �� < 0:85, respectively. The deceleration factor (q) and its cos-
mological evolution (dq/dz) are also investigated with an evolutionary form of q ¼ q0 þ z dq/dz. The best-fit values
are (q0; dq/dz) ¼ (�1:00; 1:12), with�2:23 < q0 < 0:26 and�0:07 < dq/dz < 3:48 at the 1 � level. The inferred
transition redshift between the deceleration and acceleration phases is 0:78þ0:32

�0:23 (1 �). Through Monte Carlo
simulations, we find that the GRB sample satisfying our relationship observationally tends to be a soft and bright
one and that the constraints on the cosmological parameters can be much improved either by enlarging the sample
size or by increasing the observational precision. Although the sample may not expand significantly in the Swift era,
a significant increase of the sample is expected in the long-term future. Our simulations indicate that with a sample
of 50 GRBs satisfying our multivariable standard candle, one can achieve a constraint to the cosmological param-
eters comparable to that derived from 157 Type Ia supernovae. Furthermore, the detections of a few high-redshift
GRBs satisfying the correlation could greatly tighten the constraints. Identifying high-z GRBs and measuring their
E 0
p and t 0b are therefore essential for the GRB cosmology in the Swift era.

Subject headinggs: cosmological parameters — cosmology: observations — gamma rays: bursts

1. INTRODUCTION

Long gamma-ray bursts (GRBs) originate from cosmolog-
ical distances (Metzger et al. 1997). Their births follow the star
formation history of the universe (e.g., Totani 1997; Paczynski
1998; Bromm & Loeb 2002; Lin et al. 2004). GRBs therefore
promise to serve as a new probe of cosmology and galaxy evolu-
tion (e.g., Djorgovski et al. 2003). It is well known that Type Ia
supernovae (SNe Ia) are a perfect standard candle to measure
the local universe up to a redshift of�2 (e.g., Riess et al. 2004).
Gamma-ray photons (with energy from tens of keV to sev-
eral MeV) from GRBs are almost immune to dust extinction.
They should be detectable out to a very high redshift (Lamb &
Reichart 2000; Ciardi & Loeb 2000; Gou et al. 2004). Hence,
GRBs are potentially amore promising ruler than SNe Ia at higher
redshifts.

This issue has attracted much attention in the GRB commu-
nity. Frail et al. (2001) found that the geometrically corrected
gamma-ray energy Ejet for long GRBs is narrowly clustered
around 5 ;1050 ergs, suggesting that GRBs can potentially be a
standard candle. A refined analysis by Bloom et al. (2003a)

suggests that Ejet is clustered at 1:3 ;10
51 ergs, but the dispersion

of Ejet is too large for the purpose of constraining cosmologi-
cal parameters. Schaefer (2003) considered two other luminosity
indicators proposed earlier, i.e., the variability (Fenimore &
Ramirez-Ruiz 2000; Reichart et al. 2001) and the spectral lag
(Norris et al. 2000) for nine GRBs with known redshifts, and
posed an upper limit of �M < 0:35 (1 �) for a flat universe.
Using 12 BeppoSAX bursts, Amati et al. (2002) found a relation-
ship between the isotropic equivalent energy radiated during
the prompt phase (E�,iso) and the rest-frame peak energy in the
GRB spectrum (E

0
p), i.e., E

0
p / E1/2

�; iso. This relation was con-
firmed and extended to X-ray flashes by High Energy Transient
Explorer 2 (HETE-2) observations (Sakamoto et al. 2004; Lamb
et al. 2005a). In addition, it also exists in the BATSE bursts (Lloyd
et al. 2000) and even in different pulses within a single GRB
(Liang et al. 2004). Possible theoretical explanations of this cor-
relation have been proposed (Zhang&Mészáros 2002a; Dai& Lu
2002; Yamazaki et al. 2004; Eichler & Levinson 2004; Rees &
Mészáros 2005). Because of a large dispersion, this relationship is
not tight enough to serve as a standard candle for precision cos-
mology, either.

Ghirlanda et al. (2004a) found a tighter correlation between
GRB jet energy and E

0
p, which reads Ejet / (E 0

p)
3/2, where Ejet ¼

E�; iso(1� cos �jet) and �jet is the jet opening angle inferred from
the ‘‘jet’’ break time imprinted in the light curves (usually in the
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optical band, and in some cases in the X-ray and the radio bands)
by assuming a uniform top-hat jet configuration. It is puzzling
from the theoretical point of view how a global geometric quan-
tity ( jet angle) would conspire with E�, iso to affect E 0

p. None-
theless, the correlation has a very small scatter that is arguably
fine enough to study cosmology. By assuming that the correla-
tion is intrinsic, Dai et al. (2004) constrained the mass content of
the universe to be �M ¼ 0:35 � 0:15 in the case of a flat uni-
verse with a sample of 14 GRBs. They also constrained the dark
matter equation-of-state parameter in the range ofw ¼ �0:84þ0:57

�0:83
at the 1 � level. Ghirlanda et al. (2004b) evaluated the goodness
of this relationship in different cosmologies by exploring the full
cosmological parameter space and came up with similar conclu-
sions. Friedman&Bloom (2005) suggested that this relationship
is only marginal but not adequate enough for a precision cosmol-
ogy study. Themain criticisms are related to several assumptions
involved in the current Ghirlanda relation, such as constant me-
diumdensity (which could vary in different bursts; e.g., Panaitescu
& Kumar 2002), constant radiative efficiency (which also varies
from burst to burst; e.g., Lloyd-Ronning & Zhang 2004; Bloom
et al. 2003a and references therein), and the assumption of the
top-hat jet configuration (in principle jets are possibly structured;
Rossi et al. 2002; Zhang & Mészáros 2002b). Nonetheless, the
Ghirlanda relation has motivated much work on measuring cos-
mology with GRBs (e.g., Firmani et al. 2005; Qin et al. 2005; Xu
et al. 2005; Xu 2005; Mortsell & Sollerman 2005).

In this work, we further address the GRB standard candle
problem by a new statistical approach. Instead of sticking to the
jet model and searching for the correlation between E 0

p and Ejet

(which requires a model- and parameter-dependent jet angle),
we start with purely observable quantities to search for possible
multivariable correlations by using a regression method. A sim-
ilar technique was employed by Schaefer (2003). The motiva-
tions of our analysis are twofold. First, within the jet model,
there is no confident interpretation to the Ghirlanda relation. It
is relatively easy to imagine possible correlations between E 0

p

and E�, iso (e.g., Zhang & Mészáros 2002a; Rees & Mészáros
2005), since the latter is also a manifestation of the energy per
solid angle along the line of sight, which could be possibly re-
lated to the emission spectrum. However, it is hard to imagine
how the global geometry of the emitter would influence the
local emission property.3 Since there is no straightforward ex-
planation for the Ghirlanda relation, one does not have to stick
to this theoretical framework, but should rather try to look for
some empirical correlations instead. This would allow more
freedom for possible interpretations. Second, within various
theoretical models (e.g., Table 1 of Zhang & Mészáros 2002a),
the value of E 0

p depends on multiple parameters. The problem is
intrinsically multidimensional. It is pertinent to search for
multivariable correlations rather than searching for correlations
between two parameters only. The Ghirlanda relation is a rela-
tion that bridges the prompt emission and the afterglow phases.
It is also worth checking whether or not there are similar relation-
ships for other parameters. Below we perform a blind search for
the possible multivariable correlations among several essential
observable quantities, including the isotropic gamma-ray en-
ergy E�, iso, the isotropic X-ray afterglow energy EXA, iso, the
isotropic optical afterglow energy EOA, iso, the cosmological
rest-frame peak energy E 0

p, and the cosmological rest-frame

temporal break in the optical afterglow light curve (t 0b). We de-
scribe our sample selection criteria and the data reduction method
in x 2. Results of a multivariable regression analysis are pre-
sented in x 3. A strong dependence of E�, iso on E

0
p and t 0b is

derived from our multivariable regression analysis. Regarding the
E�; isoðE 0

p; t 0bÞ relationship as a luminosity indicator, in x 4 we ex-
plore the possible constraints on cosmological parameters using
the GRB sample. In addition (x 5), we perform Monte Carlo sim-
ulations to investigate the characteristics of the GRB sample sat-
isfying the relationship observationally and examine how both the
sample size and the observational precision affect the constraints
on cosmological parameters. Conclusions and discussion are pre-
sented in x 6. Throughout thework the Hubble constant is adopted
as H0 ¼ 71:3 km s�1 Mpc�1.

2. SAMPLE SELECTION AND DATA REDUCTION

Our sample includes 15 bursts with measurements of the
redshift z, the spectral peak energy Ep, and the optical break
time tb. It has been suggested that the observed Amati relation
and the Ghirlanda relation are likely due to some selection ef-
fects (Nakar & Piran 2005; Band & Preece 2005). The sample
from which the relations are drawn may therefore be ill-defined
if the parent sample is the whole GRB population. However,
we believe that due to the great diversity of GRBs and their
afterglow observations, one does not have to require all GRBs
to form a global sample to serve as a standard candle. If one
can identify a subclass of GRBs to act as a standard candle (such
as SNe Ia in the supernova zoo), such a sample could give mean-
ingful implications to cosmology. Our selected GRBs belong to
such a category, which assemble a unique and homogeneous
subclass. Since not all GRBs necessarily have an Ep or a tb ,
the parent sample of our small sample is also only a subclass
of the whole GRB population. Note that in order to preserve
homogeneity, we do not include those bursts whose afterglow
break times were observed in the radio band (GRB 970508,
GRB 000418, GRB 020124) or in the X-ray band (GRB 970828)
but were not seen in the optical band. Since we are not sticking to
the jet model, we do not automatically accept that there should be
a temporal break aswell in the optical band.We also exclude those
bursts whose Ep or tb are not directly measured (but with upper
or lower limits inferred from theoretical modeling). This gives a
sample of 15 bursts up to 2005 February. They are tabulated in
Table 1 with the following headings: (1) GRB name; (2) redshift;
spectral fitting parameters including (3) spectral peak energy Ep

(with error �Ep
), (4) low-energy spectral index � , and (5) high-

energy spectral index �; (6) �-ray fluence (S�) normalized to a
standard band pass (1–104 keV in the cosmological rest frame)
according to spectral fitting parameters (with error �S�

� �
); (7) the

corresponding observation energy band; and (8) references for
these observational data. Our GRB sample essentially resemble
those used in Ghirlanda et al. (2004a), Dai et al. (2004), and Xu
et al. (2005). These bursts are included in the Table 1 of Friedman
& Bloom (2005), but that table also includes those bursts with
only limits for Ep, tj, and z, as well as those bursts whose tb was
observed in the nonoptical bands (or inferred from theoretical
model fittings). We believe that our sample is more homoge-
neous than the sample listed in Friedman & Bloom (2005).
The X-ray and optical afterglow data of these GRBs are listed

in Table 2 with the following headings: (1) GRB name; (2) X-ray
afterglow temporal decay index, �X; (3) epoch of X-ray after-
glow observation (in units of hours); (4) 2–10 keV X-ray flux
(FX, in units of 10�13 ergs cm �2 s �1) at the corresponding

3 The simple Ghirlanda relation could be derived from the standard after-
glow model and the Amati relation, but one has to assume that t 0b is constant for
all GRBs, which is not true (see also Wu et al. 2004).
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epoch; (5) 2–10 keV X-ray afterglow flux normalized to
10 hours after the burst trigger (including the error); (6) temporal
break (including the error) of the optical afterglow light curves
(tb); (7) optical temporal decay index before the break (�1);
(8) optical temporal decay index after the break (�2); (9) ref-
erences; (10) R-band optical afterglow magnitudes at 11 hours.
We find that the mean values of�X,�1, and�2 in our sample are
1.41, 1.0, and 2.0, respectively. For those bursts whose �X, �1,
and �2 values are not available, we take these means in our
calculation.

With the data collected in Tables 1 and 2, we calculate the
total isotropic emission energies in the gamma-ray prompt phase
(E�, iso), in the X-ray afterglow (EXA, iso), and in the optical after-
glow (R band) (EOA, iso), i.e.,

E�; iso ¼
4�D2

L(z)S�k

1þ z
; ð1Þ

EXA; iso ¼
4�D2

L(z)
R t2
t1
Fx t1ð Þt�X dt

1þ z
; ð2Þ

TABLE 2

X-Ray and Optical Afterglow Data of the GRB Sample Adopted in this Paper

GRB

(1)

�X
a

(2)

Epocha

(hr)

(3)

FX
a

(4)

FX,10 hr

(�FX ;10 hr
)a

(5)

tb(�tb )
b

(days)

(6)

�1
b

(7)

�2
b

(8)

Referenceb

(9)

R11 hr
c

(10)

980703................................ 1.24 34 4 18.24(4.97) 3.4(0.5) . . . . . . 1 20.1

990123................................ 1.08 6 110 66.09(6.33) 2.04(0.46) 1.17 1.57 2 19.4

990510................................ 1.41 8.7 47.8 41.07(3.68) 1.6(0.2) 0.46 1.85 3 18.1

990712................................ . . . . . . . . . . . . 1.6(0.2) 0.83 3.06 4 19.5

991216................................ 1.61 4 1240 287.21(14.73) 1.2(0.4) 1 1.8 5 16.9

011211................................ 1.5 11 1.9 2.23(0.39) 1.56(0.02) 0.95 2.11 6 20.1

020124................................ . . . . . . . . . . . . 3(0.4) . . . . . . 7 21.6

020405................................ 1.15 41 13.6 68.98(20.21) 1.67(0.52) 1.4 1.95 8 18.3

020813................................ 1.42 39 22 113.98(17.01) 0.43(0.06) 0.76 1.46 9 19.1

021004................................ 1.56 20.81 4.3 13.5(2.47) 4.74(0.14) 0.85 1.43 10 18.4

021211................................ . . . . . . . . . . . . 1.4(0.5) . . . . . . 11 21.3

030226................................ . . . 37.1 0.32 12.3 1.04(0.12) 0.77 1.99 12 19.5

030328................................ . . . 15.33 3 . . . 0.8(0.1) 1.0 1.6 13 20.2

030329................................ 1.74 4.85 1400 467(23) 0.5(0.1) 1.18 1.81 14 14.7

030429................................ . . . . . . . . . . . . 1.77(1) 0.88 2.87 15 20.2

a Temporal decay index and X-ray afterglow flux in the 2–10 keV band at a given observed epoch. FX,10 hr is the extrapolated/interpolated X-ray afterglow flux
at 10 hours after the GRB trigger. The fluxes are in units of 10�13 ergs cm�2 s �1. They are taken from Berger et al. (2003) except for those with marks: 030226
(Pedersen et al. 2003); 030328 (Butler et al. 2003); 030329 (Marshall & Swank 2003; Marshall et al. 2003; Tiengo et al. 2003a, 2003b).

b Temporal break (error) and temporal indices before and after the break, and their references: (1) Frail et al. 2003; (2) Kulkarni et al. 1999; (3) Stanek et al. 1999;
(4) Björnsson et al. 2001; (5) Halpern et al. 2000; (6) Jakobsson et al. 2003; (7) Berger et al. 2002; (8) Price et al. 2003; (9) Barth et al. 2003; (10) Holland et al. 2003;
(11) Holland et al. 2004; (12) Klose et al. 2004; (13) Andersen et al. 2003; (14) Berger et al. 2003; (15) Jakobsson et al. 2004a.

c R-band magnitude adjusted to 11 hr after the burst trigger (from Jakobsson et al. 2004b).

TABLE 1

Prompt Emission Parameters of the GRB Sample Adopted in this Paper

GRB

(1)

z

(2)

Ep(�Ep
)

(keV)

(3)

�

(4)

�

(5)

S� (�S )
(ergs cm�2)

(6)

Band

(keV)

(7)

References

(8)

980703.............................. 0.966 254(50.8) �1.31 �2.40 22.6(2.3) 20–2000 1; 2; 2; 2

990123.............................. 1.6 780.8(61.9) �0.89 �2.45 300(40) 40–700 3; 4; 4; 4

990510.............................. 1.62 161.5(16.1) �1.23 �2.70 19(2) 40–700 5; 4; 4; 4

990712.............................. 0.43 65(11) �1.88 �2.48 6.5(0.3) 40–700 5; 4; 4; 4

991216.............................. 1.02 317.3(63.4) �1.23 �2.18 194(19) 20–2000 6; 2; 2; 2

011211.............................. 2.14 59.2(7.6) �0.84 �2.30 5.0(0.5) 40–700 7; 8; 8; 7

020124.............................. 3.2 86.9(15.0) �0.79 �2.30 8.1(0.8) 2–400 9; 10; 10; 10

020405.............................. 0.69 192.5(53.8) 0.00 �1.87 74.0(0.7) 15–2000 11; 11; 11; 11

020813.............................. 1.25 142(13) �0.94 �1.57 97.9(10) 2–400 12; 10; 10; 10

021004.............................. 2.332 79.8(30) �1.01 �2.30 2.6(0.6) 2–400 13; 10; 10; 10

021211.............................. 1.006 46.8(5.5) �0.86 �2.18 3.5(0.1) 2–400 14; 10; 10; 10

030226.............................. 1.986 97(20) �0.89 �2.30 5.61(0.65) 2–400 15; 10; 10; 10

030328.............................. 1.52 126.3(13.5) �1.14 �2.09 37.0(1.4) 2–400 16; 10; 10; 10

030329.............................. 0.1685 67.9(2.2) �1.26 �2.28 163(10) 2–400 17; 10; 10; 10

030429.............................. 2.6564 35(9) �1.12 �2.30 0.85(0.14) 2–400 18; 10; 10; 10

References.—References are in order for z, Eobs
p , (� , � ), S� : (1) Djorgovski et al. 1998; (2) Jimenez et al. 2001; (3) Kulkarni et al. 1999; (4) Amati

et al. 2002; (5) Vreeswijk et al. 2001; (6) Djorgovski et al. 1999; (7) Holland et al. 2002; (8) Amati 2003; (9) Hjorth et al. 2003; (10) Sakamoto et al. 2005;
(11) Price et al. 2003; (12) Barth et al. 2003; (13)Möller et al. 2002; (14) Vreeswijk et al. 2003; (15) Greiner et al. 2003; (16)Martini et al. 2003; (17) Bloom
et al. 2003b; (18) Weidinger et al. 2003.
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and

EOA; iso ¼
4�D2

L (z)
R tb
t1
FR t1ð Þt� 1 dt þ

R t2
tb
FR tbð Þt� 2 dt

h i
1þ z

: ð3Þ

Here DL(z) is the luminosity distance at the redshift z, k is a
k-correction factor to correct the observed gamma-ray fluence
at an observed bandpass to a given bandpass in the cosmolog-
ical rest frame (1–104 keV in this analysis), t1 and t2 are, respec-
tively, the starting and the ending times of the afterglow phase,
FX is the flux of the X-ray afterglow in the 2–10 keV band, and
FR is the flux of the optical afterglow in the R band (FR ¼ �R f�).
Since the very early afterglows might be significantly different
from the later afterglows, which were not directly detected for
the GRBs in our sample, we thus take t1 ¼ 1 hr. We also choose
t2 ¼ 30 days. The derived E�, iso, EXA, iso, and EOA, iso are tabu-
lated in Table 3.

3. MULTIVARIABLE REGRESSION ANALYSIS

As mentioned in x 1, previous authors interpret the rela-
tionship among E�, iso, E

0
p, and t 0b based on the GRB jet model

(e.g., Rhoads 1999; Sari et al. 1999). In this scenario, the rela-
tionship among the three quantities becomes the Ejet / (E 0

p)
3/2

relationship. When this relation is expanded, one gets E�; isot
0
b /

(E 0
p)

2. The indices for E�, iso and t 0b are not independent and
are bound by the jet model. However, since the current jet

model is difficult to accommodate the Ejet-Ep relationship, we
no longer need to assume an underlying correlation between
E�, iso and t 0b. We therefore leave all the indices as free param-
eters and perform a multivariable regression analysis to search
a possible empirical relationship among E�, iso, E

0
p, and t 0b. We

also extend our analysis to search the dependence of EX, iso and
ER, iso on E 0

p and t 0b, respectively. The regression model we use
reads

Êiso ¼ 10	0E 0	1

p t 0	2b ; ð4Þ

where E 0
p ¼ Ep(1þ z) and t 0b ¼ tb/(1þ z). We measure the sig-

nificance level of the dependence of each variable on the model
by the probability of a t-test ( pt). The significance of the global
regression is measured by an F-test (the F-test statistics and
the corresponding significance level pF) and a Spearman lin-
ear correlation between log Êiso and log Eiso (the correlation co-
efficient r and the significance level pS). We find that E�, iso

strongly depends on both E
0
p and t

0
b with a very small uncertainty

(Table 4, Fig. 1). The actual dependence format depends on the
cosmology adopted. For a flat universe with �M ¼ 0:28, this
relation reads

Ê�; iso;52 ¼ (0:85 � 0:21)
E 0
p

100 keV

� �1:94�0:17
t 0b

1 day

� ��1:24�0:23

;

ð5Þ

TABLE 3

Derived Isotropic Energies, Rest-Frame Peak Energies, and Rest-Frame Temporal Breaks

for the GRB Sample Adopted in this Paper (for �M ¼ 0:28 and �� ¼ 0:72)

GRB

(1)

log E�; iso(�E� )

(ergs)

(2)

log EXA; iso

(ergs)

(3)

log EOA; iso

(ergs)

(4)

log E 0
p(�Ep

)

(keV)

(5)

log t 0b(�tb )
(day)

(5)

980703........................ 52.85(0.04) 47.69 . . . 2.70(0.09) 0.238(0.064)

990123........................ 54.64(0.06) 48.80 46.09 3.31(0.03) �0.105(0.098)

990510........................ 53.29(0.05) 48.58 46.60 2.63(0.04) �0.222(0.008)

990712........................ 51.88(0.02) . . . 44.08 1.97(0.07) 0.049(0.054)

991216........................ 53.85(0.04) 49.00 45.70 2.81(0.09) �0.226(0.145)

011211........................ 53.01(0.04) 47.72 45.84 2.27(0.06) �0.304(0.006)

020124........................ 53.37(0.05) . . . . . . 2.70(0.08) �0.146(0.058)

020405........................ 53.17(0.01) 47.92 45.91 2.51(0.12) �0.005(0.135)

020813........................ 54.13(0.06) 48.90 45.42 2.68(0.09) �0.719(0.061)

021004........................ 52.66(0.10) 48.54 46.82 2.42(0.16) 0.153(0.013)

021211........................ 52.05(0.03) . . . . . . 1.97(0.05) �0.156(0.155)

030226........................ 52.90(0.05) 47.52 46.14 2.46(0.09) �0.458(0.050)

030328........................ 53.60(0.02) 47.66 45.51 2.50(0.05) �0.498(0.054)

030329........................ 52.19(0.04) 48.27 45.40 1.90(0.01) �0.369(0.087)

030429........................ 52.24(0.07) . . . 46.30 2.11(0.11) �0.315(0.245)

TABLE 4

Results of Multiple Variable Regression Analysis (for �M ¼ 0:28 and �� ¼ 0:72)

Parameter Ê�; iso(E
0
p; t

0
b) ÊX; iso(E

0
p; t

0
b) ÊR; iso(E

0
p; t

0
b)

	0( pt) ........................................... 48:0 � 0:4(<10�4) 46:27 � 1:35(<10�4) 44:22 � 1:42(<10�4)

	1( pt) ........................................... 1:94 � 0:17(<10�4) 0:74 � 0:51(0:18) 0:64 � 0:57(0:26)

	2( pt) ........................................... �1:24 � 0:23(2 ; 10�4) �0:30 � 0:62(0:64) 0:29 � 0:88(0:75)
Global F-test statistics ................. 115.4 1.08 0.77

Probability pF ............................... <10�4 0.39 0.49

Global correlation r ..................... 0:96 � 0:21 0:46 � 0:24 0:38 � 0:28

Probability PS............................... <10�4 0.15 0.22
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where Ê�; iso;52 ¼ Ê�; iso /10
52 ergs. However, when we test the

possible correlations among EX, iso (or Eo, iso), E
0
p, and t

0
b, no sig-

nificant correlation is found (Table 4, Figs. 2 and 3).

4. LUMINOSITY INDICATOR
AND COSMOLOGICAL IMPLICATIONS

The dispersion of the Ê�; iso(E
0
p; t 0b) relationship is so small that

it could potentially serve as a luminosity indicator for the cos-
mological study. This relationship is purely empirical, exclu-
sively using directly measured quantities, and without imposing
any theoretical models and assumptions. It therefore suffers fewer
uncertainties/criticisms than does the Ghirlanda relation (e.g.,

Friedman & Bloom 2005). Below we discuss the cosmological
implications for this new empirical luminosity indicator.

The distance modulus of a GRB, which is defined as 
 �
5 log (DL/10 pc), could bemeasured by this luminosity indicator as


̂¼ 2:5 	0 þ 	1 log E
0
pþ 	2 log t

0
b � log 4�S�k

� �
þ log (1þ z)

h i
� 97:45: ð6Þ

Since the luminosity indicator is cosmology-dependent, 
̂ is also
cosmology-dependent. We therefore cannot directly use this re-
lationship for our purpose. Ideally, it should be calibrated by
local GRBs (e.g., z < 0:1), as is the case of Type Ia supernova
cosmology. However, the GRB low redshift sample is small. More
importantly, the local GRBs appear to have different character-
istics than the cosmological ones (e.g., long lag, less luminous),
so that they may not belong to the subclass of GRBs we are dis-
cussing. We are left out without a real (cosmology-independent)
luminosity indicator at this time.

We adopt the following method to circumvent the difficulty.
We first recalibrate this relationship in each cosmological
model, and then calculate the goodness of the relationship in that
cosmology by �2 statistics. We then construct a relation that is
weighted by the goodness of each cosmology-dependent re-
lationship, and use this cosmology-weighted relationship to mea-
sure the universe. The procedure to calculate the probability
function of a cosmological parameter set (denoted as �, which
includes both �M and ��) is the following.

1. Calibrate and weight the luminosity indicator in each cos-
mology. Given a particular set of cosmological parameters (�̄),
we perform a multivariable regression analysis and get a best-
fit correlation Ê�; iso(�̄; E 0

p; t 0b). We evaluate the probability
[w(�̄)] of using this relation as a cosmology-independent lu-
minosity indicator via �2 statistics, i.e.,

�2
w(�̄) ¼

XN
i

log Êi
�; iso �̄
� �

� log Ei
�; iso �̄
� �h i2

�2
log Êi

�; iso

�̄
� � : ð7Þ

Fig. 1.—Plot of log Ê�; iso calculated by the empirical relationship from our
multivariable regression analysis as compared with log E�, iso derived from the
observed fluence with the cosmological parameters of �M ¼ 0:28 and �� ¼
0:72. The solid line is the regression line for the two quantities.

Fig. 2.—Plot of log ÊXA; iso calculated by the empirical relationship from our
multivariable regression analysis as compared with log EXA, iso derived with the
cosmological parameters of �M ¼ 0:28 and �� ¼ 0:72.

Fig. 3.—Plot of log ÊOA; iso calculated by the empirical relationship from our
multivariable regression analysis as compared with log EOA, iso derived with the
cosmological parameters of �M ¼ 0:28 and �� ¼ 0:72.
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The smaller the �2
r , the better the fit and hence, the higher the

probability for this cosmology-dependent relationship to serve
as a cosmology-independent luminosity indicator. We assume
that the distribution of the �2

w(�̄) is normal, so the probability
can be calculated as

w(�̄) / e�� 2
w(�̄)=2: ð8Þ

2. Regard the Ê�; iso(�̄; E
0
p; t 0b) relationship derived in each

cosmology as a cosmology-independent luminosity indicator
without considering its systematic error and calculate the cor-
responding distance modulus 
̂ (�̄) (eq. [6]) and its error �
̂,
which is

�
̂ i
¼ 2:5

ln 10

"
	1

�E 0
p; i

E 0
p; i

 !2

þ 	2

�t 0
b; i

t 0b; i

 !2

þ
�S�; i

S�; i

� �2

þ �ki

ki

� �2

þ �zi

1þ zi

� �2
#1=2

: ð9Þ

3. Calculate the theoretical distance modulus 
 (�) in an
arbitrary set of cosmological parameters (denoted by �) and
calculate the �2 of 
 (�) against 
̂(�), i.e.,

�2 �̄j�
� �

¼
XN
i


̂i(�̄)� 
i(�)
� �2

�2

̂i

�̄
� � : ð10Þ

4. Assuming that the distribution of �2(�̄j�) is also normal,
calculate the probability that the cosmology parameter set � is
the right one according to the luminosity indicator derived from
the cosmological parameter set �̄, i.e.,

p (�̄j�) / e�� 2(�̄j�)=2: ð11Þ

With equation (8), we can define a cosmology-weighted like-
lihood by w(�̄)p(�̄j�).

5. Integrate �̄ over the full cosmology parameter space to get
the final normalized probability that the cosmology � is the
right one, i.e.,

p(�) ¼
R
�̄ w �̄
� �

p �̄j�
� �

d�̄R
�̄ w �̄
� �

d�̄
: ð12Þ

In our calculation, the integration in equation (12) is computed
through summing over a wide range of the cosmology param-
eter space to make the sum converge, i.e.,

p(�) ¼
P

�̄i
w �̄i

� �
p �̄ij�
� �

P
�̄i
w �̄i

� � : ð13Þ

The essential ingredient of our method is that we do not
include the systematical error of the Ê�; iso(�̄; E

0
p; t 0b) relation-

ship into �
̂s; i
. Instead, we evaluate the probability that a par-

ticular relationship can be served as a cosmology-independent
luminosity indicator using its systematical error, and integrate
over the full cosmology parameter space to get the final prob-
ability of a cosmology with the parameter set �. In Figure 4 we
plot 
̂ against 
with �
̂s

in the case of� ¼ 0:28 and�� ¼ 0:72
cosmology. Similar investigation could be done for other cos-
mologies. Below, we apply the approach discussed above to

investigate the possible implications on cosmography and
cosmological dynamics with our GRB sample.

4.1. Implications for �M and ��

In a Friedmann-Robertson-Walker (FRW) cosmology with
mass density�M and vacuum energy density�� , the luminosity
distance is given by

DL ¼ c(1þ z)H�1
0 �kj j�1=2

sinn

(
�kj j1=2

;

Z z

0

dz (1þ z)2 1þ �Mzð Þ � z(2þ z)��

� ��1=2

)
; ð14Þ

where c is the speed of light, H0 is the present Hubble constant,
�k ¼ 1� �M � �� denotes the curvature of the universe, and
‘‘sinn’’ is sinh for�k > 0 and sin for�k < 0. For a flat universe
(�k ¼ 0), equation (14) turns out to be c (1þ z)H�1

0 times the
integral. We calculate p(�) with our GRB sample, where � ¼
(�M ; ��). Since both ½�z/(1þ z)�2 and (�k /k)

2 are signif-
icantly smaller than the other terms in equation (9), they are
ignored in our calculations. Shown in Figure 5 are the most
probable value of (�M , �� ) and the 1 � to 3 � contours of the
likelihood in the (�M , �� )-plane. The most probable value of
(�M , �� ) is (0.28, 0.64). The contours show that 0:05 < �M <
0:50 at 1 �, but �� is poorly constrained; i.e., �� < 1:2 at 1 �.
For a flat universe, as denoted as the dashed line in Figure 5,
the constraints are tighter, i.e., 0:13 < �M < 0:49 and 0:50 <
�� < 0:85 at 1 �.

4.2. Implications for the Cosmology Dynamics

Riess et al. (2004) found the evidence from SNe Ia data that
the universe was switched from a past decelerating phase to the
currently accelerating phase at an epoch of zt ¼ 0:46 � 0:13,
assuming that the deceleration factor q evolves with redshift as

Fig. 4.—Distance modulus derived from the data, 
̂, and its observational
error, �
̂ , plotted against the distance modulus derived from theory, 
 . The cos-
mological parameters adopted are �M ¼ 0:28 and �� ¼ 0:72.
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q(z) ¼ q0þ z dq/dz. Following Riess et al. (2004), we also take
q(z) ¼ q0þ z dq/dz to analyze the implications for q0 and dq/dz
from the current GRB sample. The luminosity distance in a
(q0, dq/dz) model can be written as

DL ¼ c (1þ z)

H0

Z z

0

e
�
R u

0
½1þq(u)�d ln(1þu)

du: ð15Þ

We then calculate the values of P(�) [where � ¼ (q0; dq/dz)]
using the cosmology-weighted standard candle method dis-
cussed above. Shown in Figure 6 are the most probable values
of (q0, dq/dz) and their likelihood interval contours from 1 to
3 �. The most probable values of (q0, dq/dz) are (�1.0, 1.12),
and at the 1 � level their values are constrained in the ranges of
�2:23 < q0 < 0:26 and �0:07 < dq/dz < 3:48. Although the
current sample still does not place a tight constraint on both q0
and dq/dz, it shows that q0 tends to be less than 0 and dq/dz tends
to be greater than 0, suggesting that the universe is accelerating
now. At a given epoch zt in the past, q(zt) ¼ 0 should be satis-
fied, which denotes the transition between the past decelerat-
ing phase and the currently accelerating phase. The likelihood
function of zt derived from the current GRB sample is shown in
Figure 7. We calculate the best value of zt by

ẑt ¼
P

p(zt)ztP
p(zt)

; ð16Þ

and get ẑt ¼ 0:78þ0:32
�0:23 at 1 �.

5. SIMULATIONS

We have shown that using the analysis method proposed in
this paper, one can place some constraints on the cosmology
parameters with our GRB sample. These constraints are, how-
ever, weaker than those obtained with the SNe Ia data, and they
have uncertainties because of the small GRB sample effect. To
increase the significance of the constraints, one needs a larger
sample and smaller error bars for the measurements. In order to
access the characteristics of the GRB sample satisfying our re-
lationship observationally and how the sample size and the mea-
surement precision affect the standard analysis, we perform some
Monte Carlo simulations. We simulate a sample of 103 GRBs.
Each burst is characterized by a set of parameters denoted as
(z, Ep, S� , tb). A fluence threshold of Sth;� ¼ 10�7 ergs s�1 is
adopted. Since the observed tb is in the range of 0.4–6 days,
we also require that tb be in the same range to account for the

Fig. 5.—Contours of likelihood interval distributions in the (�M , �� )-plane
inferred from the current GRB sample using the method developed in x 4. The
cross marks the most probable value of (�M , �� ), which is (0.28, 0.64). The
contours give 0:05 < �M < 0:50 (1 �). Considering a flat universe (dashed line),
the contours yield 0:13 < �M < 0:49 and 0:50 < �� < 0:85 (1 �).

Fig. 6.—Contours of likelihood interval distributions in the (q0, dq/dz)-plane
inferred from the current GRB sample using the method developed in x 4. The
most probable values of (q0, dq/dz) are (�1.00, 1.12) ( plus sign). At the 1 � level
their values are constrained in the ranges of �2:23 < q0 < 0:26 and �0:07 <
dq/dz < 3:48, respectively.

Fig. 7.—Smoothed likelihood function of the transition redshift from a
decelerating universe to an accelerating universe inferred from the current
GRB sample. The dashed lines mark the 1 � region, and the best value of ẑt is
0:78þ0:32

�0:23.
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selection effect to measure an optical light curve break. Our
simulation procedures are described as follows.

1. Model the cumulative probability distributions of Ep, Eiso,
and z by the observational data. We first obtain the differential
distribution of these measurements. The Ep distribution is de-
rived from the GRB spectral catalog presented by Preece et al.
(2000),which iswellmodeled bydp/d log Ep / exp ½�2(log Ep;2�
0:38)2/0:452�, where Ep;2 ¼ Ep/100 (Liang et al. 2004). The
Eiso distribution is obtained from the current sample of GRBs
with known redshifts. Since the Eiso distribution suffers obser-
vational bias at the low Eiso end, we consider only those bursts
with Eiso > 1051:5 ergs and get dp/d log Eiso / �0:3 log Eiso.

4

The redshift distribution is derived by assuming that the GRB
rate as a function of redshift is proportional to the star formation
rate. The SF2 model from Porciani & Madau (2001) is used in
this analysis. We truncate the redshift distribution at 10. Based
on these differential distributions, we obtain the cumulative
distributions, px, where x is one of these parameters. We use the
discrete forms of these distributions to save the calculation
time. The bin sizes of log Ep, log Eiso, and z are taken as 0.025,
0.1, and 0.01, respectively.

2. Simulate a GRB. We first generate a random number
m (0 < m � 1) and obtain the value of xm from the inverse func-
tion of px(xm) ¼ m, i.e., xm ¼ p�1

x (m). Since px is in a discrete
form, we search for a bin i, which satisfies px(xi) < m and
px(xiþ1) > m and calculate the xm value by xm ¼ (xiþ1þ xi)/2.
Repeating this step for each parameter, we get a simulated GRB
characterized by a set of parameters denoted as (z, Eiso , Ep).

3. Calculate S� and examine whether or not the S� satisfies
our threshold setting. The gamma-ray fluence is calculated by
S ¼ Eiso(1þ z)/4�D2

L(z), where DL(z) is the luminosity distance
at z (for a flat universe with �M ¼ 0:3). If S < Sth;� , the burst
is excluded.
4. Derive tb.We first infer a tb value fromour empirical relation

in a flat universe of �M ¼ 0:3, then assign a deviation (�tb) to
the tb value. The distribution of �tb is taken as dN /d� log tb ¼
exp (��t 2b /2�), where � ¼ 0:1. This typical value is taken ac-
cording to the current sample, which gives themean andmedian
deviations as � ¼ 0:15 and 0.11, respectively. If the tb value is
in the range of 0:4 < tb < 6 days, this burst is included in our
sample. Otherwise, it is excluded.
5. Assign observational errors to Ep, S� , and tb. Since the

observed �x /x is about 10%–20%, we take the errors as �x/x ¼
0:25k with a lower limit of �x/x > 5%, where k is a random
number between 0 and 1.
6. Repeat steps 2 and 5 to obtain a sample of 103 GRBs.

The distributions of z, Ep, and S� for the simulated GRB sam-
ple are shown in Figure 8 (solid lines). The observed distribu-
tions of these quantities are also shown for comparison (dotted
lines). The observed redshift distribution is derived from the
current GRB sample with known redshifts (45 GRBs). The ob-
served Ep distribution is taken from Preece et al. (2000). The
observed S� is derived from the BATSE current GRB sample5

(Cui et al. 2005). The comparisons indicate that the mock GRB
sample tends to be a softer (low Ep) and brighter (high S�) one.
The redshifts of the mock GRB sample tend to be higher than the
current GRB sample, but this might be due to observational
biases against high-redshift GRBs (Bloom 2003).

Fig. 8.—Distributions of z, Ep, and S� for the simulated GRB sample satisfying our model-independent standard candle relationship. For comparison, the super-
posed dotted lines are the distributions derived from the observational data.

4 Our simulations do not sensitively depend on the Eiso distribution.We have
used a random distribution between 1051.5 and 1054.5 ergs and found that the
characteristics of our simulated GRBs sample are not significantly changed. 5 See http://cossc.gsfc.nasa.gov/docs /cgro/batse/.
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We investigate the effect of the sample size on the cosmo-
logical constraints with our mock GRB sample. We randomly
select subsamples of 25, 50, 75, and 100 GRBs from the mock
GRB sample. We compare the 1 � contours of likelihood dis-
tributions in the (�M,��)-plane derived from these subsamples
in the left panel of Figure 9. It is evident that as the sample size
increases, the constraint on �M and �� becomes tighter. Com-
paring the left panel of Figure 9 with Figure 8 in Riess et al.
(2004), we find that the likelihood contour derived from the
subsample of 50 GRBs is comparable to that derived from the
gold sample of 157 SNe Ia.

Precision cosmology requires accurate observations. Mod-
ern sophisticated observation techniques in distant SNe Ia (e.g.,
Riess et al. 1998; Schmidt et al. 1998; Perlmutter et al. 1999)
and cosmic microwave background (CMB) fluctuations (e.g.,
Bennett et al. 2003; Spergel et al. 2003) have made great prog-
ress on modern precision cosmology. We inspect the uncer-
tainties of the distance modulus derived from the SNe Ia data
and find that the average uncertainty is �̄DM � 0:25, while for
our GRB sample it is 0.45. Increasing observational precision
(i.e., reducing the errors) should significantly improve the
constraints on the cosmological parameters. We simulate an-
other GRB sample with systematically smaller observational
errors, i.e., �x/x ¼ 0:15k in step 5 of our simulation procedure.
We get a sample with �̄DM � 0:28, comparable to the SNe Ia
gold sample. The comparison of the likelihood contours (1 �) in
the (�M, ��)-plane derived from a sample of 50 mock GRBs
with �̄DM � 0:45 (solid contour) and with �̄DM � 0:28 (shaded
region) is shown in the right panel of Figure 9. It is found that
the latter is significantly tighter, comparable to that derived from

a sample of 100 mock GRBs with an average error in modulus
of 0.45.

The results in Figure 9 indicate that tighter constraints on
cosmological parameters could be achieved by either enlarging
the sample size or increasing the observational precision. If a
sample of 50 GRBs with comparable observational precision to
that of the SN Ia gold sample could be established, the constraints
would be even tighter than those derived from the SN Ia gold
sample.

6. CONCLUSIONS AND DISCUSSION

Without imposing any theoretical models or assumptions,
we investigate the relationship among E�, iso, E

0
p, and t 0b using a

multivariable regression method. Our GRB sample includes
15 bursts, whose E 0

p and t
0
b are well measured. The results indicate

that E�, iso strongly depends on both E 0
p and t 0b with a very small

dispersion, e.g., equation (5) for a flat universe with�M ¼ 0:28.
We also perform a similar analysis by replacing E�, iso by the
isotropic afterglow energies in the X-ray and optical bands and
find that these energies are essentially not related to E

0
p and t

0
b at

all. We then use the E�; isoðE 0
p; t 0bÞ relationship as a luminosity in-

dicator to infer the possible cosmological implications from the
GRB sample. Since this relationship is cosmology-dependent, we
suggest a new method to weight various cosmology-dependent
relationships with its probability of being the right one and use
the cosmology-weighted standard candle to explore the most
plausible cosmological parameters. Our results show that the
most probable values are (�M ; ��) ¼ (0:28; 0:64). At the 1 �
level, we have 0:05 < �M < 0:50 and �� < 1:2. In the case of
a flat universe, the 1 � constraints are 0:13 < �M < 0:49 and

Fig. 9.—Comparison of the 1 � likelihood contours for different simulated samples. Left: Simulations for different sample sizes, 25 GRBs (dotted contour), 50 GRBs
(solid contour), 75 GRBs (dashed contour), and 100 GRBs (shaded region). The same observational errors (�x /x ¼ 0:25k, where k is a random number between 0 and 1)
are adopted. Right: Simulations for the same sample size (50 GRBs) but for different observational errors: �x /x ¼ 0:25k (solid contour) and �x/x ¼ 0:15k (shaded
region; see the procedure of our simulations for details). The dotted line is for a flat universe.
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0:50 < �� < 0:85. The deceleration factor of the universe (q)
and its cosmological evolution (dq/dz) are also investigated with
an evolutionary form of q ¼ q0 þ z dq/dz. The GRB sample
implies that the most probable values of (q0, dq/dz) are (�1.00,
1.12), and they are constrained in the ranges of �2:23 < q0 <
0:26 and �0:07 < dq/dz < 3:48 at the 1 � level. A transition
redshift between the deceleration and the acceleration phases of
the universe is inferred as ẑt ¼ 0:78þ0:32

�0:23 at the 1 � level from the
GRB sample.

As a luminosity indicator, ourmodel-independentE�; iso(E
0
p; t 0b)

relationship has the advantage over the previous Ghirlanda re-
lation that only pure observational data are involved. Since this
luminosity indicator is cosmology-dependent, we use a strategy
through weighting this relationship in all possible cosmologies
to statistically study the cosmography and cosmological dy-
namics. A similar method has been used in the SN cosmology
when dealing with the uncertainty in the present Hubble con-
stantH0. In their method (e.g., Riess et al. 1998), the systematic
error of H0 is not included when calculating the error of the
distance modulus. Rather, they integrated the probability of H0

over a large range of values (without weighting for each value
of H0). This is the so-called marginalization method. We also
perform this marginalization method to deal with our coeffi-
cients (	0, 	1, and 	2) and redo the cosmology analysis. This is
equivalent to integrating over the whole cosmology parameter
space without weighting, i.e.,

p(�) ¼
Z
�̄

p(�̄j�) d�̄: ð17Þ

The result using this method to constrain �M and �� is pre-
sented in Figure 10. Comparing it with Figure 5, we find that
both methods give consistent results, but Figure 5 gives a tighter
constraint on cosmological parameters. This is understandable,
since the weighting method reduces the contributions of side

lobe around the ‘‘true’’ cosmologies. In any case, an essential
ingredient of both methods is that the uncertainty of the standard
candle itself is not included in calculating the uncertainty of
the distance modulus derived from the data. If the uncertainty of
the standard candle is indeed included in the uncertainty of the
distance modulus, with equations (12) and (17) to calculate
p(�), one gets a very loose constraint (Fig. 11). Even at the 1 �
level, the current GRB sample cannot place any meaningful con-
straints on both �M and ��. We believe, however, that in such
a treatment, the uncertainty of the distance modulus is over-
estimated, since the error introduced from measurements should
not be mixed with the systematic uncertainty of the standard
candle.
The GRB sample from which our relationship is drawn is

currently small. The constraints on the cosmological parame-
ters derived from this sample are weaker than those from the
SN Ia gold sample. Our simulations indicate that either en-
larging the sample size or increasing the observational precision
could greatly improve the constraints on the cosmological pa-
rameters. A sample of 50 bursts with the current observational
precision would be comparable to the 157 SN Ia gold sam-
ple in constraining cosmology, and a better constraint is achiev-
able with better observational precisions or an even larger sample
size.
Our simulations also indicate that the GRB sample satisfying

our relationship observationally tends to be a soft and bright
one, for which t 0b is in the reasonable range for detection. De-
tailed optical afterglow light curves covering from a few hours
to about 10 days after the burst trigger6 are required to measure
the tb value. The observed tb ranges from 0.4 to 5 days in the
current GRB sample. In the CGRO/BATSE duration table,7

there are�1500 long GRBs. To test the probability of a BATSE
burst having a tb in the range of 0.4–5 days, we perform a

Fig. 10.—Contours of likelihood interval distributions in the (�M,��)-plane
derived by the marginalization method. The cross marks the most probable
value of (�M , �� ), which is (0.28, 0.52). The contours give 0:05 < �M < 0:61
(1 �). Considering a flat universe (dashed line), the contours yield 0:14 <
�M < 0:58 and 0:40 < �� < 0:84 (1 �).

Fig. 11.—Same as Fig. 5, but the uncertainties of the parameters in the
empirical relationships are also included in the error of the distance modulus
in the calculation of p(�) by eq. (12). Only the 1 � interval is shown.

6 Starting from about 10 days, the contributions from the underlying SN
and host galaxy components may become prominent, and the afterglow level
may be too faint to be detected.

7 See http://gammaray.msfc.nasa.gov/batse/grb/catalog/current.
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simulation similar to that described in x 5, but take the Ep and
S� distributions directly from the BATSE observations. We
find that the probability is�0.15 in the cosmology of�M ¼ 0:3
and �� ¼ 0:7. Among well-localized GRBs, about 50% of the
bursts are optically bright. We thus estimate that there have
been�110 BATSE GRBs that might have been detected to sat-
isfy our E�; iso(E

0
p; t 0b) relationship. As shown in Figure 9, such a

sample is comparable to the SNe Ia gold sample for constrain-
ing cosmological parameters. A dedicated GRB mission carry-
ing a BATSE-like GRB detector and having the capability of
precisely localizing and following up GRBs ( like Swift) would
be ideal to establish a homogenous GRB sample to perform
precision GRB cosmology (Lamb et al. 2005b).

Since launched on 2004 November 20, the Swift mission
(Gehrels et al. 2004) is regularly detecting GRBs with a rate of
�80 bursts per year. Detailed X-ray and UV/optical afterglow
observations spanning from 1 minute to several days after the
burst have been performed for most of the bursts. However, the
energy band of the Swift Burst Alert Telescope (BAT) is narrow,
i.e., 15–150 keV. As we show in Figure 8, the typical Ep of a
burst in our sample is marginally at the end of the BAT energy
band. As a result, BAT is not ideal for the purpose of expanding
the sample for GRB cosmology. As a result, we do not expect a
dramatic enlargement of our sample in the Swift era. None-
theless, those bursts with an Ep of �50–100 keV8 could have
their Ep well-measured by Swift. We therefore highly recom-
mend detailed optical follow-up observations for these bursts
with UVOTand/or other ground-based optical telescopes. This
would present an opportunity to enlarge our sample with the
Swift data.

The major advantage of GRBs serving as a standard candle
over SNe Ia is their high-redshift nature. The observed spectra
and fluences of high-redshift GRBs may not be too different
from the nearby ones (Lamb & Reichart 2000). For example,
the fluence of GRB 000131 (z ¼ 4:5) is 1 ; 10�5 ergs cm�2 in the

25–100 keV band (Hurley et al. 2000), which is significantly
larger than the fluence of typical GRBs (�10�6 ergs cm�2 in the
25–2000 keV band). The highest redshift burst in our sample is
GRB 020124 (z ¼ 3:2). Its fluence is 6:8 ;10�6 ergs cm�2 in the
30–400 keV band, and its observed peak energy is 120 keV.
These indicate that the current GRB missions, such as Swift and
HETE-2, are adequate to observe high-redshift GRBs.9 We ex-
plore how the constraints on cosmological parameters are im-
proved by identifying several high-redshift bursts.We artificially
select five high-redshift GRBs from our simulated GRB sample
with z � 4:0, 5.0, 6.0, 7.0, and 8.0, respectively, and with ob-
servational errors �x /x ¼ 0:25k. The constraints on the cosmo-
logical parameters from these pseudo–high-z GRBs together
with the current observed GRB sample are shown in Figure 12
(shaded region), where the results from the current observed
GRB sample are also plotted for comparison (contours). It is
found that adding a few high-zGRBs could result inmuch tighter
constraints on cosmological parameters. Identifying high-zGRBs
and measuring their E 0

p and t
0
b are therefore essential for the GRB

cosmology in the near future.
Our model-independent relationship is close to the Ghirlanda

relationship, which was derived on the basis of a simple ver-
sion of GRB jet models. In such a model invoking a jet with en-
ergy uniformly distributed in the jet cone, the observable tb is
physically related to the epoch when the bulk Lorentz factor of
the ejecta is reduced to the inverse of the jet opening angle
(Rhoads 1999; Sari et al. 1999). Relating tb to the jet opening
angle, the jet energy is then given by Ejet / (E�; isot

0
b)

3/4(n��)1/4,
where n is the circumburst medium density and �� is the effi-
ciency of GRBs. The Ghirlanda relation can be then expressed

8 Such a burst tends to be an X-ray–rich GRB (Lamb et al. 2005a).

Fig. 12.—Demonstration of the potential constraints on cosmological parameters with high-redshift GRBs. The gray contours show the results derived from five
pseudo–high-redshift GRBs together with the observed GRB sample (1 � [dark gray] to 3 � [light gray]), and the line contours show the results from the current
observed GRB sample only.

9 Strictly speaking, we refer to the optical band in the cosmological rest
frame to define t 0b. This is not an issue if the GRB redshift is small. For high-z
GRBs, the optical band in the observer’s frame is highly extincted by neutral
hydrogen, but one could still detect tb from the infrared band. Infrared-band ob-
servations are also essential for identify high-zGRBs. IR follow-up observations are
therefore essential to add the high-z bursts in our sample.
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as Eiso / E 02
p t

0�1
b (n��)

�1/3. Comparing this with our model-
independent relationship (eq. [5]), we can see that both relations
are roughly consistent with each other if n and �� are universal
among bursts. As discussed above, the motivations for us to in-
troduce our multivariable relationship are twofold. First, n and
�� may not be constant and actually vary from burst to burst. This
introduces a lot more uncertainties in the Ghirlanda relationship
(e.g., Friedman & Bloom 2005). Second and more importantly,
there is no straightforward interpretation of the relation within the
jet model. Jumping out from the jet model framework would give
more freedom of theoretical interpretations.

The tight relation of Eiso(E
0
p; t 0b) is very intriguing, and its

physical reason calls for investigation. The fact that E�, iso

strongly depends on E 0
p and t

0
b, while both EXA, iso and EOA,iso do

not, implies that t 0b is a quantity related to GRBs rather than to
their afterglows. A similar signature was previously found by
Salmonson & Galama (2002), who discovered a tight correla-
tion between the pulse spectral lag of GRB light curves and tb.
We therefore suspect that tb might be a unique probe for the
GRB prompt emission properties. Within the jet scenario, the
anticorrelation between tb and E�, iso (first revealed by Frail et al.
2001) may be physically related to the different metallicity
abundances of the progenitor stars (e.g., metal-poor stars rotate
more rapidly, and the GRBs they produce are more energetic
and have more collimated jets; MacFadyen & Woosley 1999;
Ramirez-Ruiz et al. 2002) or may be simply a manifestation of

the viewing angle effect in a structured-jet scenario (Rossi et al.
2002; Zhang & Mészáros 2002b). Such an anticorrelation,
when combined with the physical models of E�, iso�Ep correla-
tions (e.g., Zhang & Mészáros 2002a; Rees & Mészáros 2005),
may be able to interpret the observed Eiso(E

0
p; t 0b) relation, al-

though a detailed model is yet constructed. Alternatively, there
might be a completely different physical reason under the
Eiso(E

0
p; t 0b) relation that is not attached to the jet picture. One

possibility is that the spectral break in the prompt emission and
the temporal break in the optical band may be related to a same
evolving break in the electron spectral distribution (B. Zhang,
2005, in preparation). In such an interpretation, the temporal
break time in the optical band is expected to be different from
those in the radio or in the X-ray bands. Since so far there is no
solid proof for the achromatic nature in broadband for any ‘‘jet
break,’’ such a possibility is not ruled out.
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